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Figure 1: Streakline visualization of a 2 TB liquid hydrogen turbopump data set.

Abstract

This paper describes the methods used to produce an interactive vi-
sualization of a 2 TB computational fluid dynamics (CFD) data set
using particle tracing (streaklines). We use the method introduced
by Bruckschen et al. {2001] that precomputes a large number of par-
ticles, stores them on disk using a space-filling curve ordering that
minimizes seeks, and then retrieves and displays the particles ac-
cording to the user’s command. We describe how the particle com-
putation can be performed using a PC cluster, how the algorithm
can be adapted to work with a multi-block curvilinear mesh, and
how the out-of-core visualization can be scaled to 296 billion parti-
cles while still achieving interactive performance on PC hardware.
Compared to the earlier work, our data set size and total number of
particles are an order of magnitude larger. We also describe a new
compression technique that allows the lossless compression of the
particles by 41% and speeds the particle retrieval by about 30%.
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1 introduction

Interactive visualization of data sets containing a terabyte or more
is difficult or impossible to do even on the largest systems. Very
few systems have enough memory to store the data in memory.
Out-of-core visualization using traditional visualization algorithms
is impossible since the data rates of tens of gigabytes per second
necessary are currently not possible. However, it is currently quite
possible to generate multi-terabyte data sets of CFD or physics cal-
culations on today’s supercomputers. In addition, using PC-class
hardware for the visualization is desirable since this allows scien-
tists to examine their results on their desktop.
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whenever the visualization parameters (particle seedpoint, isosur-
face value, etc.) are changed.

The approach introduced by Bruckschen et al. [2001] for interactive
particle visualization does not have this limitation. By computing
a large number of streaklines from a regular grid of seedpoints and
storing them on disk, a subset of the traces can be retrieved and
viewed interactively. This approach stores the traces on disk in a
format that allows the streaklines to be read from disk quickly. Each
trace is stored contiguously. In addition, the traces are written to
disk in the order of a Morton space-filling curve [Sagan 1994], also
known as a Peano or z-curve. This ordering reduces the number of
disk seeks required to retrieve a 3D box of seedpoints.

In this paper, we describe several extensions to this work and the
results from applying the resulting system to a 2 TB CFD simula-
tion of a lignid hydrogen mrbopump (see Figure 1). We exrend the
approach to allow for particle advection through a data set defined
on a multi-block curvilinear grid. We also describe how the parti-
cle advection can be computed on a Beowulf cluster with a limited
amount of memory per node and how the particle data can be com-
pressed by about 40%. Finally, we describe a viewer implemen-
tation that interactively retrieves particles from a file server. The
viewer uses a server process that runs on one or more file servers,
retrieves particle data, and sends it to a display process running on
a workstation. The viewer prefetches data from one or more file
servers for increased performance.

2 Related Work

Visualization of large data sets has been an area of active research.

ualization of large data has be
A commonly used technique 1s to precompute the visualization by
s

systems that use precompuration are IBM Visunalization Data Ex-
plorer (now OpenDX) [Abram and Treinish 1995] and UFAT [Lane
1994]. Out-of-core visualization is another approach to handling
large data sets. Chiang et al. [Chiang et al. 1998] propose a fast
out-of-core technique for extracting isosurfaces using a precom-
puted disk-resident index; Chiang [2003] has recently extended the
technique to handle time-varying data. A different out-of-core tech-
nique is to load only the portion of the data needed to produce the
visualization via demand paging [Cox and Ellsworth 1997]. While
this technique supports particle tracing and other visualizations, it
does not allow interactve visualization of terascale data sets. Ueng
et al. [1997] have implemented a different out-of-core particle trac-
ing system that works with unstructured meshes.

A different large data visualization technique is to stream the data
through a series of filters that produce the visualization, as proposed
by Ahrens et al. [2001]. This technique scales to handle very large
data sets, and can be run in parallel. It should allow interactive
visualization if the data are not too large and the visualization is
computed on a sufficiently large system. However, streaming sys-
tems are not suitable for particle tracing because streaming requires
a priori knowledge of the data access pattern, which is not available
with particle tracing. Finally, Heerman [1999] documents many of
the issues encountered when dealing with terascale data on a day-
to-day basis.

3 Algorithm Overview

Our visualization approach has two phases that run at
n a

times. The particle computation applic
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Figure 2: 4x4 x4 Morton curve.
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Figure 3: 3x3x2 Morton curve.

step, and the viewer application is used for the interactive visualiza-
tion. The computation application uses the input data set and writes
metadata and particle traces to disk. The viewer application shows
the particle traces to the user.

The particle data are organized as a series of files, one per time step.
Each file has the streaklines computed for each seedpoint stored
contiguously, which allows the streakline to be read with one disk
read. Furthermore, the particle traces are placed in the file accord-
ing to their Morton order [Sagan 1994], which means thart traces for
seedpoints near to each other in physical space are usually near to
each other in the particle file, further reducing rhe number of disk

seeks.

The Morton order is based on a space-filling curve, and is the same
as the ordering seen when performing a depth-first traversal of an
octree’s leaf nodes. Figure 2 shows the Morton order of a 4x4 x4
cube. Because the Morton order is only defined for cubes with
powers-of-two sizes, we use a modified Morton order that handles
arbitrary dimensions. This order is the same order as the one you
would get if you traversed a cube that was the smallest power of
two possible enclosing the desired array, but did not count elements
outside the array. Figure 3 shows an example. The earlier imple-
mentation [Bruckschen et al. 2001] has more details on how the
Morton order reduces disk seeks.

Each file has a header giving the length of each trace, followed
by the particle traces. Unlike Bruckschen et al.’s implementation,
which uses a single trace length for each file, we choose to store
variably-sized traces, which only contain particles remaining in the
domain. While using a single trace length simplifies the data access
and makes saving the particle trace lengths unnecessary, it would
have increased the amount of uncompressed particle data by about
33% or 700 GB. We could have limited the excess storage by limit-
ing the maximum trace length, but doing so would limit our ability
to determine the amount of recirculation and particle mixing, an im-
portant CFD visualization task. Compressing single-length particle
traces would reduce the amount of exira storage, but we have not
investigated this.

We follow Bruckschen et al. by compressing the particles’ 32-bit
floating point coordinates to 16 bits. The 16-bit values are com-
puted by subtracting one corner of the mesh’s bounding box. divid-
ing by the size of the bounding box, and quantizing the resulting
fractions to 16 bits. Given the resolution of current screens. the re-
sulting particle coordinates should place the particles on the screen

with 2 position error smaller than a pixel unless the view only shows
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a very small fraction of the overall data set

Since we do not limit the length of particle traces, the worst-case
total number of partcles over all the time steps is proportional to
the square of the number of time steps. As shown in Figure 4. the
number of particles per time step is not very far from the worst case
which results in large particle files and very long compuration times
(see Section 4).

3.1 Curvilinear Data

Com} puting particles in a data set using a regular grid [Bruckschen
et al. 2001] 1s somewhat simpler comnared to a curvilinear gnd.
Particle integration requires retrieving velocity values at arbitrary
I i space. This is smaightforward with regular
grids. but i comp“"ated with multi-block curvilinear m"'ds
ire point location code 1o find the cell enclos-
ML location, and additional code /
cases where r}]ut‘ ap. We use the Field
brary [Moran 2001] for accessing velocity values, which si
the retriev :L Iron: an application’s point of view to a single function

An additional complicarion is that the domain of curvilinear grids
are much more irregular than regular grids, which means that find-
ing the seedpoints for the o&*’tl@e Integration requires a bit more
work. Like Bruckschen et al.’s [2001] implementation. we use a
regular gnd of seedpoint iocations. However, the regular grid of
seedpoints is usually evenly spaced throughout the bounding hox
of the mesh (the user can specify a different box of seedpoints if an
area is of particular interest). With many curvilinear grids, most of
hese initial >ef>cpomt< are outsme the Unc In our data set, only
he i \\emc m seed-

points inside the d. the acrive \eedwomm at
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time. Thu% we test each initial seedpoint against a
i S swdoom s inside any time s

We test twenty time ste eps eac}”

Number of active seedpoinis '
Total number of particles 296 billion
Particle storage (uncompressed) 1777 GB

| Particle storage (compressed) 1038 GB
Table 1 [nitial data set and particle data statistics (M=10°, G=10°)

Another option with curvilinear grids is to place seedpoints evenly
in compurtational space. Compurational space seeding is clearly de-
sirable when the scientist would like to see p.:mcl S pluca around

mownU object, such as a rotating turbine blade. Computar on._l
seeding might be com.cerec >.ADWO b
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seedpoints near the domain exit will have shorter traces than ones
ear the domain entrance. We give each node 4 disparate chunks of
seedpoints to reduce load imbalances caused by this effect.

We reduce the memory usage via several techniques:
e [oading only a pair of time steps at a time, as described above.

e Reducing the particle memory footprint. This is significant

’ since each node will have about 4 million particles at the
end of the computation. Our initial particle racing code was
very general (allowing particles constrained to a computa-
tional plane, streaklines or streamlines, etc.) and stored sev-

eral intermediate results for increased speed, and used over

200 bytes per particle. We reduced the memory to 24 bytes

per particle by removing unnecessary features and not storing

the intermediate results.
e Exploiting the regularities in the grid, as described below.

e Using an out-of-core algorithm to load solution data via de-
mand paging, also described below.

4.1 Exploiting Mesh Regularities

The mesh has 35 blocks, or zones, each representing a part of the
domain. Many of the zones contain vertices near various features,
such as turbine blades. Some of the zones rotate over time, such as
those surrounding the rotating blades of the turbine (see Figure 1).
Other zones do not change over time. Furthermore, many of the
zones are rotated copies of other zones in the same time step, such
as the zones that contain points around each of the blades.

We used the techniques described in [Ellsworth and Moran 2003]
to find the regularities described above and replace the time-varying
mesh (contained in 2400 mesh files) with a replacement mesh that
requires that only 46% of one mesh file be loaded. The replacement
mesh uses three zones that refer to static data, four zones that rotate
over time, 15 zones that rotate over time and can reuse the vertices

from another zone, and 12 zones that are static and can use rotated
vertices from another zone. All of the zones have unique IBLANK
data (per-vertex flags that indicate validity and correspondences be-
tween zones) that do not vary over time. Thus, all the IBLANK
flags from a single time step must be loaded. Using the replace-
ment mesh cuts down the amount of mesh data by over a factor of
5000. (However, not all of the original mesh data would need to be
loaded if the demand paging techniques described below are used.)

4.2 Demand-Paging Solution Data

Because each cluster node computes particles for seedpoints clus-
tered in a few parts of the domain, each node does not access all of
the solution data (the velocity values). We avoid loading unneces-
sary solution data by using demand paging. This technique divides
each solution file into a number of fixed-size blocks. When a solu-
tion file is opened, a data structure is created that indicates whether
a given block is present, and points to the block if it is. Then,
when solution data are requested, the data retrieval code checks
whether the corresponding blocks are present, loads the blocks if
not present, and then retrieves the requested data from the blocks.
The data blocks are allocated from a fixed-size pool of blocks. If a
block is needed when all the blocks are allocated, an in-use block
“Ll\ accessed is chosen and reused. Each

that has not been rece
block contains an 8 x§x 8§ cube of data. which reduces the number
of blocks neeced com pJ“C to blocks of data organized in standard

array order. More details about this technigue can be found in [Cox
and Ellsworth 1997].

Unfortunately, the computation must wait while a block is loaded
from the file server. We reduce this waiting by using a number of
different threads, each working on a trace from a different seed-
point. When a thread starts waiting for a block of data, a different
thread is made runnable (if one is available) so the processor is kept
busy. This multithreading technique is also used to provide work for
the two processors in each node. We speed the retrieval of blocks
from the file server by using a custom protocol that allows multiple
outstanding read requests, and only sends the requested data. Us-
ing this protocol increases the speed compared to using NFS. See
[Ellsworth 2001] for more details about the multithreading tech-
nique, the remote protocol, and their associated speedups.

The particie computation algorithm reduces the latency due to load-
ing solution data by preferching biocks when a new tume step 1is
cram:d If the previous time step calcularion used files r and 7 + 1,
the new time step calculation W111 use files 7+ 1 and 7 +2. When
the new step is started, a separate thread finds which blocks are cur-
rently present for file 7 + 1 and quickly loads them for file 7 + 2.
This prefetching is effective because there is a high correlation be-
tween the particle positions, and hence the blocks used, in adjacent
time steps. However, this prefetching scheme will continue to load
blocks that were used in one time step and are not used in future
time steps. To reduce the amount of unused prefetched data, no

prefetching is used for every tenth time step.

4.3 Particle Computation Performance

The memory reduction techniques result in significant time sav-
ings. Using th° replacement meshes reduced the computation time
b\/ roughly 25%. Prefetching solution blocks saves about an addi-
tional 10%. Loading the solution data via demand paging results in
loading only 25 to 43% of the data.

However, the current implementation is still slower than we would
like: the particle computation for the 2 TB data set took 13 days. We
believe that significant optimizations are possible because the CPU
utilization is less than 50%. One possible cause of the low CPU
usage is that the nodes are waiting for solution data from the file
server. A second possible cause is that the operating system does
not work well with the multithreading algorithm (used to keep the
CPU working while data are being loaded) because the algorithm
switches contexts at a very high rate. We are currently investigating
the cause of the low CPU utilization.

Another way to speed the computation would be to use an SMP sys-
tem instead of a cluster. The SMP system could easily prefetch en-
tire time steps and hold them in memory, which would remove the
performance impact of the demand paging. Finally, implementing
dynamic load balancing is another way to increase performance.

5 Compression

Since the computed particles use a large amount of disk space, even
after the 16 bit quantization, we have explored compressing the par-
ticle files. We used a prediction preprocessing step that reduced the
entropy of the data as well as the zlib compression library [Deutsch
and Gailly 1996], used by gzip. The prediction step uses particles
earlier in each trace to compute the prﬂdictad \'alue and the dif-

We

ference between the actual and predicted value i
tried several diff ﬂren. prediction methods as w eL as different zlib
compression settings. All of the compression methods are lossess.
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. where 5, ., 1s the oniginal size of the particle races,
and Scomp is the compressed size.

The prediction methods tried were no prediction. and zeroth. first,
and second order predlcuon. When no prediction was used. the
particle traces were compressed between 2.5 and 3.4%, depending
on the zlib compression settings. Zeroth order prediction, where
each pﬂftic1= was predicted to be the same as the previous par-

ticle, works much be ter. compressing the particle data by 27
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where p, and x, are the /" preprocessed and original particle in
the trace. respec zzv"lv First order prediction predicts that the par-
tcles trave]l in a straight line, and gets the best results: 42 ©
439 compression. Finally, using second order prediction, where

p.=x.—3x._, —3x._,+Xx,_,, results in only 1 to 2% compression
The different z tngs ‘ect. Changing the effort pa-

aximum) did not chamge trw

compression 5peL dat
using the ce:a_ﬁ: or Huffmag-only compre

pression ratio by about 1%.
took about half the tme to compress the dat

process by about 10% since it uses a much s rrp
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shown in Figure 3. The initial tir
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'“. not compress at all
not work well on very
short sequences. and because the increased bookkeeping data used
in compressed r} es 1s noticeable with very short races. The com-
pression ratio climbs to about 63% once the traces have abour 100
particles. The compression ratio n.en slowly drops to about a
the trace length increases. A poxs; le explanation for the smaller

Hh

compression ratio is that more fully evolved traces are much more
complex than short traces, \\'hzah e Jts in less compressicn. The
overall compression ratio is 41% when using first order prediction

and Huffman-only zlib compression.
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| Small Large

| Statistic Selection  Selection
Number of seedpoints 275 512
Average number of particles 268,116 577911
Maximum number of particles 421,851 1,092,775
Average trace length 975 1,128
Average Frame Rate Small Large
Uncompressed particles, 1 server 54 34 .
Compressed particles, 1 server 7.0 43
Compressed particles, 2 servers 122 6.1

Table 2: Statistics and viewer performance for two selection sizes.
The frame rates are given in frames per second.

ond request slighily decreases e response Taie. Thls Is par-
tially alleviated by applying selection box changes to the next
frame’s prefetch request.

7 Equipment

The particle computation was done on a 49 node Beowulf cluster.
Each node had two 1.67 Hz Athlon MP processors and 1 GB of
memory. and had a Fast Ethernet network connection. The master
node was similar but had 2 GB of memory and Gigabit Ethernet.
The input data as well as the computed particles were stored on a
pair of file servers. Each had two 3 GHz Xeon processors, 4 GB
of memory, dual channel-bonded Gigabit Ethernet, and 21 250 GB
dara disks organized into three RAID 5 arrays (4.5 TB total storage
each). The viewer timings were done on a workstation that had
two 3 GHz Xeon processors, 4 GB memory, Gigabit Ethernet, and
a nVidia Quadro FX 3000 graphics card. All the systems ran Red

Tat T imny
dl Liltux.

8 Performance

We measured the speed of the viewer application for a few different
configurations so we could gauge its overall speed. and quantify the
effect of using compression and different numbers of servers.” All
of the measurements used the turbopump data set and the same set
of particles and seedpoints. Each run measured the time the viewer
application took to retrieve a static selection of seedpoints for each
of the time steps in the simulation. The performance figures are for
runs that do not include any additional reference geometry in the
Viewer.

We measured three different configurations: one using uncom-
pressed particle traces and one file server, a second using com-
pressed particle traces and one server, and a third using compressed
particles and two servers. Each configuration was run using two
different particle selections: a small selection near the middle of
the pump and a larger one near the pump’s inlet. Table 2 gives
some statistics about the selections and the resulting performance,
and Figure 6 shows a few representative frames of the visualizations
resulting from the two selection boxes.

The small selection box contained a 5x7x8 array of seedpoints
and had one row of missing seedpoints because the box was not
entirely in the domain. The frame rate when using this selection,

~ae and Aane gerver wac S A frama or
C SErver was 3.4 Irames per

S, anl Ulic

the frame rate by 75% to 12.2 frames per second. When using com-
pressed particles, the
action.

frame rate is high enough to allow easy inter-

The large selection box contained an 8x8x 8 array of seedpoints.
This is the same number of seedpoints used in the measurements
by Bruckschen et al. [2001]. However, our visualization had a
larger average trace length, 1,128 particles, than the maximum trace
length of 130 particles used in the earlier paper. (Of course, com-
parisons between the two implementations and data sets are diffi-
cult due to equipment differences.) The frame rate with the larger
selection box and uncompressed particle traces was 3.4 frames per
second, which is a bit low. Using compressed traces on one server
increased the frame rate by 27%, to 4.3 frames per second. Animat-
ing the particles using compressed traces and two file servers ran at
6.1 frames per second, a 41% increase. This latter frame rate is rea-
sonably fast; it is fast enough for the overall particle movement to
be understood.

Overall, using particle trace compression results in a noticeable per-
formance improvement in the viewer. In addition, using two servers
instead of one adds a large performance boost since disk reads can
be done in parallel.

The above measurements only give performance information for
one mode of operation: when the particles are being animated with
a static selection box. Other modes have different performances.
Changing the selection while animating has somewhat lower per-
formance since the particle prefetching does not rewieve all of the
needed particles. Interactively modifying the time step is also a bit
slower since prefetching cannot be used. However, changing the
seiection box when time is heid constant 1s quite fast. it is fast be-
cause many of the particle traces displayed with the previous selec-
tion box can be reused with the new selection box since the boxes
almost always overlap. The relative performances of the different
modes can be seen in the included video.

We are still struggling with one performance problem: the frame
rate is not constant. The time to read the particles from disk for
some time steps is about twice the time for the others, even though
the number of particles retrieved is about the same. The slow time
steps are not the same between different runs, and occur roughly ev-
ery 5 to 20 frames. We have found that running the server process
at a very high priority level and locking the memory used some-
times decreases the problem. We have also found that the variable
neing o diffarant cugtam
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frame rate only occurs on ou:
results in a reasonably constant frame rate. However. even with the
variable frame rate, the particle viewer system is quite effective in

showing the flow inside the turbopump data set.

8 Conclusions and Future Work

In this paper, we have shown that the method of visualizing particle
flow by precomputing particle traces for later retrieval and display
can be scaled to handle multi-terabyte data sets and more than a ter-
abyte of particles. We have discussed the necessary modifications
to Bruckschen et al.’s original algorithm that allow a data set with
a curvilinear mesh to be used, and that allow the particle computa-
tion to be done using a PC cluster. In addition, a new compression
technigue allows the particle traces to be compressed by 41%, sav-
ing a significant amount of storage space, and also improves the
interactive viewer performance by roughly 30%. Overall, we have
visualization system that allows interactive particle

demonstrated a
visualization of a multi-terabyte CFD data set using PC hardware.

re. we plan © improve the performance of
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Figure 6: Two particle trace visualizations of the turbopump
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